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Cloud computing allows users and enterprises to process their data in
high performance servers, thus reducing the need for advanced hardware
at the client side. Although local processing is viable in many cases,
collecting data from multiple clients and processing them in a server
gives the best possible performance in terms of processing rate. In
this work, the implementation of a high performance cloud computing
engine for recognizing handwritten digits is presented. The engine
exploits the benefits of cloud and uses a powerful hardware accelerator in
order to classify the images received concurrently from multiple clients.
The accelerator implements a number of neural networks, operating in
parallel, resulting to a processing rate of more than 10 MImages/sec.

1 Introduction

We live in the era of ‘Big Data’, where a
vast amount of structured, semi-structured and
unstructured data are being generated at an
ever-accelerating pace and can be mined to obtain
valuable information. The most commonly used
approach to process this kind of data is to aggregate
raw data into large datasets, probably extend them
with metadata, and then apply machine learning
and/or artificial intelligence algorithms in order to
identify repeatable patterns [1]. Artificial neural
networks are a rapidly developing category of
machine learning structures that give computers
the capability to learn without being explicitly
programmed to perform specific tasks. They
consist of different layers for analyzing and learning
data. Each layer consists of a large number of
highly interconnected processing elements (neurons),
working together to learn from previous data in
order to solve specific problems by making proper
decisions.

Boltzmann Machine (BM) is a typical example of
a neural network structure. BMs are probabilistic
Markov Random Field models that use a layer
of hidden variables to model a distribution over
input variables, called visible variables. In general,
learning a Boltzmann machine is a computationally

demanding process. However, the learning problem
can be simplified by imposing restrictions on
the network topology, which leads to Restricted
Boltzmann Machines (RBMs)[2]. RBMs are structured
as bipartite undirected graphs, which results
to efficient inference implementation, and are
particularly capable of learning complex features.
The last few years, many applications based on
RBMs have been developed to cover a large variety
of learning problems, such as image classification,
speech recognition, collaborative filtering and so on.
One such example application is the recognition of
handwritten digits. Learning an RBM corresponds
to fitting its parameters, so that the distribution
represented by the RBM models the distribution
underlying the training data, handwritten digits in
this case [3]. The storage resources and the time
required not only to train an RBM but also to make
real-time predictions on new coming data increases
exponentially with the number of parameters. Thus
the development of a handwritten digit recognition
application on a single user machine is a non-trivial
task.

Nowadays, cloud computing solutions provide
new capabilities to users and enterprises for
processing their data remotely in high performance
servers. Users do not have to invest in information
technology infrastructure, reducing the need for
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advanced hardware at the user side. In addition,
cloud providers specialized in a particular area, such
as image processing, can bring advanced services to
a single user, complex services that are not easily
afforded by individual users. Another important
benefit is the high processing rate that can be achieved
when a high performance server is used for processing
requests from multiple independent users.

In this work, which is an extension of the work
originally presented in [4] and [5], we exploit the vast
amount of resources provided by cloud computing
along with the high computation capabilities offered
by hardware accelerators in order to build a complete
cloud-based engine that can be used in real-time
handwritten digits recognition (HDR). The engine
collects images from multiple sources over the cloud
and processes them as fast as possible resulting
in high processing rate. The high processing
rate is achieved by using a powerful hardware
accelerator that implements a number of neural
networks operating in parallel. A major advantage
of the proposed engine is that the training of the
neural networks is not only performed once during
initialization of the system, but it is also fed with
new images periodically, thus improving the accuracy
of the prediction results. The engine is presented in
detail in the sections that follow.

Section 2 gives an overview of existing
implementations, especially on handwritten digits
recognition. Section 3 analyzes Restricted Boltzmann
Machines and how they can be modified in order
to be used to solve classification problems, such
as image recognition. Section 4 presents the
architecture and the functionality of the proposed
cloud-based computing server. Section 5 highlights
the communication interface between the server and
the hardware accelerator. Section 6 describes in
detail the implementation of the neural networks,
with emphasis on the architecture of the dedicated
hardware accelerator. A complete system prototype
was developed, which is presented in Section 7.
Experimental results that demonstrate the system
performance in terms of processing rate for both
implementations are also presented.

2 State of The Art

The scientific area of automatic handwriting
recognition is of great interest for both academia
and industry. Existing algorithms are so efficient in
learning to recognize handwritten digits that they are
used, for example, by post offices to sort letters and
banks to read personal checks. MNIST is the most
widely used dataset for studying handwritten digit
recognition [6]. State-of-the-art models that present
accuracy results in the range of 0.35% down to 0.23%
error rates are based on large Convolutional Neural
Networks (CNNs), either in the form of a deep single
network optimized with various training techniques
or as a committee of many smaller networks [7], [8],

[9]. The best results so far, 0.21% error rate, have
been claimed by an approach based on regularization
of neural networks using DropConnect [10].There is
a listing of the state-of-the-art results and links to
the relevant papers on the MNIST and other datasets
collected by Rodrigo Benenson [11].

The disadvantage of CNNs is that they are very
resource-demanding and their training and inference
procedures are extremely time-consuming. As the
amount of data increases, machine learning moves
to the cloud and big clusters of high-performance
servers are used for providing real-time results. Most
works mainly deal with implementing the training
procedure by using distributed servers over the
cloud ([12], [13]) or by using higly scalable FPGA
implementations ([14], [15]). In this work, a high
performance computing engine that accepts images
from multiple clients over the cloud and classifies
them with high accuracy is presented.

Figure 1: Discriminative RBM modeling the joint
distribution of inputs and target classes.

3 Classification Restricted
Boltzmann Machines

Restricted Boltzmann Machines are usually used
as feature extractors for other learning algorithms or
as initializers for deep feedforward neural network
classifiers, not as standalone classifiers. However,
authors in [16] have proposed a discriminative
variant of RBMs that can be used autonomously in
classification tasks offering good performance results.
The bipartite undirected graph of such an RBM is
illustrated in Figure 1. Given a training set Dtrain =
{(x1, y1), ..., (xi , yi), ..., (xD , yD )}, where i denotes the i-th
example of the set consisting of an input vector xi and
the corresponding target class yi ∈ {1, ...,C}, we use the
specific RBM to model the joint distribution between
a layer of N hidden variables h = (h1, ...,hN ), usually
referred as features, and the observed variables (x,y).
It is a parametric model where the parameters Θ =
(W,b,c,d,U) represent the following:

• W: Weights matrix between x and h

• U: Weights matrix between ey and h

• b,c,d: Respective biases of x, h and ey

and ey = (1i=y) for i ∈ {1, ...,C} the ‘one out of C’ vector
representation of y.

We consider the binary version of the model where
each node, hidden or visible, may be in one state, ON
or OFF. A node adopts a new state as a probabilistic
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function of the states of its neighboring nodes and the
weights on its links to them. It stands:

p(hj = 1|y,x) = sigm(cj +ujy +
∑
i

wjixi) (1)

p(xi = 1|h) = sigm(bi +
∑
j

wjihj ) (2)

p(y|h) =
exp(dy +

∑
j ujyhj )∑

for all y exp(dy +
∑
j ujyhj )

(3)

where sigm(x) = 1/(1 + e−x) is the logistic sigmoid
function.

After the model has been trained, the conditional
probability p(y|x) is used for classification. The
conditional probability p(y|x), can be computed using
p(y|x) = argmin(F(y,x)):

F(y,h) = −dy −
∑
j

log(1 + e(cj+ujy+
∑
i wjixi )) (4)

where F(y,h) is called free energy.
In order to train an RBM to solve a particular

classification problem, an objective has to be defined
that the learning procedure will try to minimize for
all examples in the dataset Dtrain. It is possible to
choose among various different objective functions,
but generally the following three are used [17]:

• Generative Training Objective

• Discriminative Training Objective

• Hybrid Training Objective

3.1 Generative Training Objective

Given that the model defines a value for the joint
probability p(x,y), a natural choice for a training
objective is the generative objective:

Lgen(Dtrain) = −
|Dtrain |∑
i=1

logp(yi ,xi) (5)

Computing logp(yi ,xi) and its gradient with
respect to any RBM parameter Θ is intractable.
Fortunately it has been shown that the gradient
can be well approximated using the Contrastive
Divergence estimator. The analytical computation
is replaced by an estimate at a sample generated
after a limited number of Gibbs sampling steps, with
the sampler’s initial state for the visible variables
set at the training example (xi , yi). A single Gibbs
sampling iteration is usually sufficient to learn a
meaningful representation of the data [18]. Then, this
gradient estimate can be used in a stochastic gradient
descent procedure for training. A pseudocode of
the procedure is given in Algorithm 1, where γ
is the learning rate. Usually, the weights (W,U)
are initialized using small random values, while the
biases (b,c,d) are initially zero. Ideally, RBMs require

parameter updating after each single example, but
mini-batch updating can be also used. However, in
order to ensure fast model convergence, the batch size
should remain relatively small.

Algorithm 1 RBM Training over (x,y) using 1-step
Contrastive Divergence
Input: wij

for all training samples (x,y) do
1. Calculate p(h = 1|x,y) for all hidden nodes

Sample the hidden distribution < h0 >

2. Perform Gibbs sampling for k steps (k=1):

Calculate p(x|h0) for all visible nodes and
p(y|h0) for all target nodes

Sample the visible distribution < xk > and
the target distribution < yk >

Calculate p(h = 1|xk , yk) for all hidden
nodes

Sample the hidden distribution < hk >

3. Calculate gradients:

gW =< hk > ∗ < xk > − < h0 > ∗x
gU =< hk > ∗ < yk > − < h0 > ∗y
gb =< xk > −x
gc =< yk > −y
gd =< hk > − < h0 >

4. Update weights and biases:

W ′ =W −γ ∗ gW
U ′ =U −γ ∗ gU
b′ = b −γ ∗ gb
c′ = c −γ ∗ gc
d′ = d −γ ∗ gd

end for

3.2 Discriminative Training Objective

The generative training objective can be
decomposed as follows:

Lgen(Dtrain) = −
|Dtrain |∑
i=1

logp(yi |xi)−
|Dtrain |∑
i=1

logp(xi) (6)

This means that the RBM classifier will dedicate
some of its capacity at modeling the marginal
distribution of the input only. Since classification is
a supervised learning task and we are only interested
in obtaining a good prediction of the target given the
input, we can ignore the unsupervised part of the
generative objective and focus on the supervised part.
So, the discriminative training objective is defined as:

Ldisc(Dtrain) = −
|Dtrain |∑
i=1

logp(yi |xi) (7)

The most important advantage using this training
objective is that it is possible to compute exactly its
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gradient with respect to the RBMs parameters for each
example (xi , yi). For the various model parameters it
stands:

• For Θ = (c,W,U):

ϑ logp(yi |xi)
ϑΘ

=
∑
j

sigm(Oyi j (xi))
ϑOyi j (xi)

ϑΘ

−
∑

j,f orally

sigm(Oyj (xi))p(y|xi)
ϑOyj (xi)

ϑΘ

(8)

whereOyj (x) = cj+ujy+
∑
iwjixi for hidden node

j.

• For Θ = (d):

ϑ logp(yi |xi)
ϑdy

= 1y=yi − p(y|xi),∀y ∈ {1, ...,C} (9)

• For Θ = (b) the gradient is zero, since the input
biases are not involved in the computation of
p(y|x).

3.3 Hybrid Training Objective

The effectiveness of both generative and
discriminative approaches on various problems has
been studied and it has been shown that they
have quite different properties. For classification
tasks, adding the generative training objective to
the discriminative training objective is a way to
regularize the second one. To adapt the amount of
regularization, the Hybrid Training Objective can be
used:

Lhybrid(Dtrain) = Ldisc(Dtrain)−αLgen(Dtrain) (10)

where the weight α of the generative part can be
adjusted based on the performance of the model on
a validation set.

3.4 Training using MNIST

In this work, RBMs were applied on a classic
classification problem, handwritten digit recognition
using the MNIST dataset [6]. MNIST is a large
database of handwritten digits, commonly used for
training various image processing systems. The
database is also widely used for machine learning and
pattern recognition methods. The original MNIST
dataset is used here, which contains 60,000 training
and 10,000 test examples with 28x28 grey-scale
images corresponding to all 0-9 digits. This is a
multiclass classification problem, where the number
of target classes is 10. Before final integration, the best
parameters for the RBM model should be selected.
These parameters include the number of hidden
nodes N , the learning rate γ , which training objective
is minimized, the generative weight α, as well as the
batch size bs. For that reason, a complete Matlab

simulation model was developed and the effect of the
different parameters was studied using a validation
set. It should be noted that for the specific problem,
Hybrid Training led to faster convergence.

Figure 2: The HDR Computing Engine Architecture

4 HDR computing engine
architecture

Based on Classification RBMs, a high performance
computing engine able to serve a large amount of
real-time requests for detecting the correct values
of handwritten digits was implemented. This is
a complete infrastructure with multiple entities
specially designed either for training of already
accumulated data or for real-time classification of
multiple new images. Concerning the neural
networks implementation, both software modules
and dedicated hardware accelerators were developed.

The architecture of the proposed HDR computing
engine is shown in Figure 2. This engine accepts
requests from various clients from the cloud and
processes them in real-time. The system is composed
of three basic entities, which are a) Handwritten
Digits Recognition clients, b) Handwritten Digits
Recognition servers and c) Handwritten Digits (HD)
training server. The HDR clients can either be
individual clients or sets of sub-clients that are
serviced by an HDR client that combines their
requests in a single data stream. Each HDR client is
associated with a dedicated HDR server. The number
of HDR servers that are executed at any given time
is variable and is determined by the number of HDR
clients that are supported. The main advantage of the
proposed architecture is that it does not use a set of
predefined parameters but it uses the information of a
large number of clients for continuously updating the
weights and biases of the HDR algorithm, achieving

www.astesj.com 486

http://www.astesj.com


E.Bougioukou et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 483-495 (2018)

PCIe Switch/Root Complex

Config
Cntrl

Computing Engine

Accelerator

PCIe Endpoint PCIe Endpoint

App1 Appi

App2

hNN #1

VFS / Filesystem

Block / Character Device Drivers

Command
Handler

Response
Handler

IRQ

Command
Processor

Response 
Generator

PCIe BAR Regs

Profiler

Soft-multiplexer

…

Device 
Descriptors 

Queue

HOST Memory

…

hNN #2 hNN #K

DMA

Figure 3: Hardware Adaption Engine - Interfacing with the HDR hardware accelerator

high accuracy for a given complexity. The HD training
server is responsible for updating these parameters.
More specifically:

HDR Clients: A two-way TCP/IP connection [19]
between every HDR client and a dedicated HDR
server is established. They exchange variable size data
blocks, serviced either partially for better latency or as
a whole block for better processing rate.

HDR Servers: When a request for a new connection
arrives, a new HDR server thread is activated. Each
thread receives bunches of images by its client and
stores them temporarily to its local memory. Each
HDR server may accept different types of requests
from its client. The requests may differ at the number
of images per block, the image size, i.e. 16x16 or
28x28 pixels, and pixel information coding (1 bit per
pixel, 8 bits per pixel etc.). The server uses either
its built-in processing capability to serve the requests,
which means that the neural network is implemented
in high-performance software, or forwards them to a
dedicated hardware accelerator.

HD Training Server: The HD training server
receives data and performs the training of the RBM
neural networks. The data are forwarded to the
HD training server either during initialization of the
system or periodically during normal operation. In
the latter case, the HDR servers send a random
subset of images along with the information regarding
the digit recognition. After training, the HD
training server is responsible for sending the updated
parameters, weights and offsets, back to all neural
networks.

Concerning the neural network implementation
there are three possible configurations.

(i) Software-only Configuration: a software NN
(sNN) is initialized per HDR thread. Each
NN accepts images by its corresponding thread,

classifies them and returns the predicted digits.

(ii) Hardware-only Configuration: a small number
of NNs implemented in hardware (hNN)
is available to all server threads and is
shared among them. The execution time
is much smaller compared to the software
implementation and that results to much higher
processing rate. The hardware accelerator is
based on a powerful FPGA board attached to
the computing engine’s CPU using a high-speed
interface, either native PCIe Gen 3.0 with more
than 1 GBps useful transfer rate [20] or the
Coherent Accelerator Processor Interface (CAPI)
[21]. An entity called Hardware Adaptation
Engine (HAE) provides a seamless interface
between the server threads and the accelerator.
This entity is described analytically in the next
section. Each HDR server does not use a
specific hNN but whichever is available. The
hardware accelerator may consist of multiple
FPGA boards and/or GPUs. Although this
architecture is significantly more efficient, in the
case of a heavy workload, each hNN may have to
process a huge bunch of images. In this case, a
hybrid configuration is most preferable.

(iii) Hybrid Configuration: the images are still
processed by the hardware accelerator (hNNs)
but when the processing delay exceeds the
software execution time, then the sNNs start
receiving some of the images for classification.

5 Hardware Adaptation Engine

The HDR servers receive bunches of images from
their clients and store them in a FIFO at the input
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of HAE. Each HDR server has its own dedicated
FIFO. HAE is responsible for forwarding these images
for recognition to the hardware accelerator. HAE
consists of multiple functional units that are shown
in Figure 3. Initially, the Profiler decides the next
block of images that has to be forwarded to the
Soft-multiplexer. The number of images per block
is selected so that the total system performance is
maximized. The Soft-multiplexer interfaces with the
hardware accelerator through Block/Character device
drivers. The drivers and the accelerator communicate
through shared host memory areas. When the images
have been processed by the accelerator, a response
with the digits values is fed back to the proper HDR
server. A more detailed description of the HAE
functional units follows.

5.1 Profiler

It is responsible for selecting the next block of
images that has to be handled by the Soft-multiplexer.
The Profiler decisions depend on the number of
pending commands and the total response statistics
(execution time etc.). The HDR servers inform
the Profiler about their pending commands, while
the Soft-multiplexer provides timing information
regarding command execution. Initially, the Profiler
selects the commands of the next block using either a
round-robin or a static algorithm with fixed priorities.
When enough statistics have been collected, dynamic
allocation that takes into consideration the current
load is feasible.

5.2 Soft-multiplexer

It makes the basic calls for interfacing with the
Character/Block device drivers (e.g. open, close,
pwrite, pread, ioctl etc). The Soft-multiplexer
processes the selected block, extracts the commands
and forwards them to the drivers. After receiving
a notification for the completion of a command,
the Soft-multiplexer forwards a response to the
corresponding server thread. The soft-multiplexer
also informs the Profiler about the execution time of
each bunch of images.

5.3 Character/Block Device Driver

It is responsible for transferring the data from
user space to kernel space and vice versa, for address
translation and interrupt handling. The commands
are associated with a data structure, in the form of
a descriptor, which is the basic information provided
to the hardware accelerator. The Device Driver
activates the Command and Response Handler for
forwarding commands and receiving the respective
responses from the accelerator. The Command
Handler accepts commands, creates the descriptors
and stores them in a shared host memory area (Host
Descriptors Queue). Each descriptor may contain one
or more commands, associated with data from the

same or different HDR servers. When a block of
descriptors has been processed and their responses
are ready, the accelerator sends an MSI-X Interrupt to
notify the Response Handler that responses are stored
in another shared host memory area (Responses
Queue). The Response Handler decodes each
response and forwards the corresponding results to
the Soft-multiplexer.

At the accelerator’s side, the Command Processor
is responsible for accessing the descriptors at
the host’s main memory and transferring them
into accelerator’s local memory (Device Descriptors
Queue). It decodes the descriptors, transfers the
requested images using a DMA engine and feeds
any available hNN. When the image processing has
been completed the Response Generator prepares the
responses that contain the classified digits, stores
them in the Responses Queue and sends an interrupt
to the Device Driver.

6 Neural Network Implementation

For better exploitation of the hardware resources,
images of 16x16 pixels, with 1 bit/pixel, are used.
This can be achieved by proper prefiltering and
scaling, without affecting significantly the total
system’s accuracy. For this image size each hNN uses
less hardware resources, thus enabling more hNNs
to be integrated in the given accelerator resources,
while the accuracy is only slightly reduced. These
images are generated by the original ones after
proper filtering and optimum threshold application.
The pre-processing takes places at the client side
before transmission. Before moving to the actual
neural network implementation, a theoretical analysis
of certain parameters regarding the prediction
procedure is necessary.

6.1 Theoretical Analysis

As aforementioned, classification is based on the
calculation of free energy [22], given by (4). For
implementation purposes this equation is rearranged
as follows:

Sm =
Nv∑
i=1

(vi ·WVi,m) +HBm (11)

LEk,m = log(1 + exp(Sm +WTk,m)) (12)

Fek = −(
Nh∑
m=1

LEk,m + T Bk) (13)

tk = 1 :min(Fek) (14)

where Nh is the number of hidden nodes, Nt the
number of target nodes, m ∈ [1,Nh], k ∈ [1,Nt], vi
is visible node i, hm is hidden node m and tk is
target node k. Fek is the free energy of target node
k. Regarding the weights and biases, VBi are the
biases of visible nodes, T Bk are the biases of target
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Figure 4: The influence of different training datasets on classification’ s accuracy.

nodes, HBm are the biases of hidden nodes, WV are
the weights between visible and hidden nodes and
WT are the weights between target and hidden nodes.

In order to study more thoroughly the accuracy
of the proposed implementation and validate its
effectiveness under a broader set of images, the initial
dataset was extended with shifted versions of the
original images. More specifically, four additional
datasets were created, each one being a shifted copy
of the initial one. The images were shifted to the
left, right, up or down by a single pixel. In this
way, the final dataset is a superset of the original
one. Training was performed using both datasets, the
original non-shifted one and, to keep the dimensions
the same, a randomly selected collection of 60,000
images from the shifted dataset.

Figure 4 shows the effect of the training dataset
on the classification accuracy of the model, when it is
applied on three individual datasets, the original test
dataset with the non-shifted images, the test dataset
with the images that have been shifted left by one
pixel and the test dataset with the images that have
been shifted up by one pixel. As expected, the use of
the shifted version for training leads to better overall
accuracy, except in the case of the original dataset
and for a small number of hidden nodes. This is
explained by the fact that an RBM can model fewer
dependencies when it includes a small number of
hidden nodes, thus being subject to overfitting on the
training dataset. Similar results can be taken for the
datasets with the one-pixel right and down shifting.

Figure 4 also helps to specify the number of
hidden nodes that will be used in both the software

and hardware implementations of the neural network.
It is obvious that the choice of 32 hidden nodes
is a satisfactory trade-off between accuracy and
complexity. By choosing 64 hidden nodes the
accuracy improves only 2.2%, while the hardware
complexity increases almost 8 times.

6.2 Software only Configuration

As described in Section 4, each HDR server
receives requests from multiple clients. In software
implementation each HDR server implements one
RBM neural network. In order to have multiple
sNNs operating in parallel, the server application
is multithreaded, one thread per neural network.
When a high performance CPU engine is used,
multithreading results to better exploitation of the
available cores. Software multithreading is mostly
effective on multiprocessor or multicore systems,
where actual parallel or distributed processing is
feasible.

Each thread is responsible for classifying the
incoming images, by calculating their free energy (4)
with respect to each one of the ten possible classes.
Therefore, vector and matrix operations dominate
the computations. To achieve high performance, the
threads use off-the-shelf highly-optimized libraries
that exist for a variety of computer architectures.

6.3 Hardware only Configuration

Regarding the implementation of the hardware
accelerator, a major consideration involves the
arithmetic, fixed or floating-point, that will be
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Figure 5: Accelerator Architecture

used for the calculations. The proposed design
uses fixed-point arithmetic for all linear functions
(add, mul, cmp) and single-precision floating-point
for non-linear functions, like log and exp in (12).
To specify the range of the fixed-point arithmetic,
simulations were run and statistics were collected
based on all available training and test data patterns.

Figure 6: Accuracy vs Fractional bits (Nh = 32)

Figure 6 shows the accuracy results for various
fixed-point number configurations. It can be seen
that by using 16-bits fixed-point numbers, with the
first 8 bits being used for the sign bit and the integer
part and the remaining 8 bits for the fraction, a good
classification accuracy of 95% can be achieved.

The proposed architecture is based on equations
(11), (12) and (14) and is organized into three separate
phases, shown in Figure 5. The time required
to execute each phase determines the performance
increase that can be achieved by proper pipeline.
Whenever needed, the results of each phase are stored

in shared memories and/or cascaded registers. The
weights and biases are stored in dual-port RAMs
and/or FIFOs, so that they are initialized/updated
during system operation when new training data have
been used.

A detailed description of the three phases
comprising the accelerator architecture follows:

(i) Phase 1: Each image consists of a set of
pixels, which are represented as binary values.
This simplifies the multiplication part of (11),
since instead of arithmetic multiplications, low
complexity multiplexing functions can be used.
The incoming image determines the weights
that have to be used in the sum of products.
Figure 7 shows a detailed scheduling of the
operations implemented in this phase. Each
load operation refers to reading WV values
from memory. The sel of each multiplexer
is connected to the corresponding pixel of the
input image. This module needs 2 clocks
to perform load and mux operations in order
to feed the adder trees. After this point all
additions are completed in 6 clocks. A total of
4 such modules is used.

Each of these modules includes 256 adders
and is responsible for calculating 8 Sm results.
Equation (11) determines that a total of 32 Sm
results is needed. Every module operates in a
pipeline manner. Although each Sm needs 8
clocks to be calculated, by using pipeline a total
latency of 37 clocks is achieved.

(ii) Phase 2: Apart from the first addition, phase 2
is implemented using floating-point arithmetic.
It was designed using the functionalities of
Xilinx’s Floating-point IP core [23]. The
architecture of phase 2 and the respective
timing diagram is given in Figure 8. Equation
(12) is implemented in two similar and with
same latency stages: exp(a + b) and ln(a + b).
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Figure 7: Phase 1 of Accelerator Architecture: Addition and Multiplexing Scheduling

Figure 8: Phase 2 of Accelerator Architecture: Block Design (left) and Timing Diagram (right)

Figure 9: Phase 3 of Accelerator Architecture: Block Design

Therefore, two LE values can be calculated
simultaneously using pipeline. For optimum
performance, multiplexing of the incoming
Sm values is performed, thus reducing the
hardware complexity without decreasing the
processing rate, and then fixed-to-floating
point transformation is applied. Since the
Fixed-point addition with the Fixed-to-Floating
(F2F) operation lasts for less than the duration
of each of the aforementioned processing stages,
the same floating-point circuit (indicated with
a dotted line) can be used for processing
continuously a stream of Sm values. Since a
total of NhxNt LE values have to be calculated,

the number of such circuits is determined by
the multiplexing/demultiplexing used. Fl2Fi
in this figure corresponds to floating-to-fixed
transformation. Phase 2 is the slowest phase
of the whole accelerator. Reducing its latency
would lead to improvement of the whole
processing rate of the accelerator. To achieve
this, sets of four LE values are calculated
simultaneously. However, the required DSP
resources are doubled.

(iii) Phase 3: The last phase is divided into two
distinct sub-phases. The first accumulates the
LEk,j inputs from Phase 2 to produce the Fek
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Figure 10: Pipeline strategy applied between processing phases

results (13). The second sub-phase uses the
Nt computed Fe values in parallel and in a
few clock cycles determines the digit (14) that
corresponds to the class of the input image.
Figure 9 presents the architecture of Phase 3.

Since all these phases have different processing
times and do not require all the results of the previous
phase to be available in order to proceed, pipeline can
be used for increasing the whole system’s processing
rate. The latency of phase 1 is 37 clocks. In phase 2
the latency is 48 clocks and 10 such circuits are used
in parallel. The combined latency for phase 3 is 10
clocks and 10 circuits implementing the accumulation
process are used. Therefore the total latency per hNN
without pipeline is 95 clock cycles. A pipeline of two
is used and so the module is ready to receive new
images every 48 clock cycles, with a latency of 52
clock cycles, as shown in Figure 10.

7 System Prototyping and
Performance Results

The above described HDR Cloud Service has been
implemented and tested in Xeon and Power8 servers
(Table 1) while the hardware accelerator has been
implemented in a Virtex-7 FPGA. For generating
various workloads, an i7 server has been used, where
various clients were implemented with user-defined
workload patterns. The HDR clients send bunches of
images over 1 Gbps ethernet link.

7.1 Software only Configuration

The applications of clients and servers were
developed in C. Provided that HDR servers are
multi-threaded, a very popular API is used for
threading an application, known as POSIX Thread
[24]. Also, CBLAS library is used for performing all
the necessary vector and matrix operations. The OS
of all platforms is Linux ubuntu 15.10.

In order to validate the efficiency of
this configuration, the data rate achieved (in
KImages/secs) for various computing servers (Table 1)
and for various bunches of images (KImages/req) was
measured. To preserve consistency with the hardware

implementation, the number of hidden nodes used in
sNNs is 32.

Table 1: Clients and Server Platforms

Platfrom CPU Memory
Cores GHz GB Type MHz

Xeon 6 1.60 16 DDR3 2133
Power8 4 3.00 64 DDR4 1600/1333
Power8 8 3.32 64 DDR4 1600/1333

When the number of images per request is small
the total performance drops because the time between
consecutive requests is much higher compared to the
processing time of each request. On the other hand,
the number of images per request does not affect the
performance when it is more than a few hundreds
since the overhead is absorbed. This can be seen in
Tables 2 and 3.

Table 2: Processing rate [KImgs/sec] using software
HDR implementation (Nt =32 and 1KImgs/req)

Number of HDR Clients
Servers 1 4 16 64

Intel Xeon 13.20 55.01 82.31 83.10
Power8 16.12 50.52 95.01 98.14
Power8 14.39 46.92 149.03 171.86

Table 3: Processing rate [KImgs/sec] using software
HDR implementation (Nt =32 and 10KImgs/req)

Number of HDR Clients
Servers 1 4 16 64

Intel Xeon 13.31 55.36 82.11 82.77
Power8 16.20 59.82 98.13 100.09
Power8 14.48 54.88 155.33 171.20

Based on Tables 2 and 3, it is evident that the
system performance has a linear relation with the
number of HDR clients. For a small number of
clients, the system is not fully utilized due to the
communication overhead. Each client waits for the
completion of a request before sending a new one.
As the number of clients increases, this overhead is
amortized and full system utilization is achieved. So,
the performance increases with the increase in the
number of clients. The performance reaches different
maximum values, depending on the server platform
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Figure 11: Processing rate using hardware HDR implementation over PCIe

Figure 12: Processing rate using hardware HDR implementation over CAPI

used. This is mainly due to the fact that each server
has different number of CPU cores (Table 1). As
mentioned, when multiple threads are running, they
are distributed to different cores and exploit better the
capabilities of each CPU.

7.2 Hardware only Configuration

As far as the accelerator is concerned, based on
the latency numbers provided above, a processing
rate of 2.6 MImages/sec, at 125 MHz, is achieved
by each hNN module. To maximize the total
accelerator performance, four hNN modules operate
in parallel. That results to a total processing rate of

10.4 MImages/sec, at 125 MHz. The limitation of four
modules is introduced by the available resources of
the specific Virtex-7 FPGA board (Table 4).

The accelerator supports two interfaces, PCIe Gen
3.0 with 8 lanes and Coherent Accelerator Processor
Interface (CAPI). In both cases, a databus of 1024
bits is used that provides images up to four hNNs
simultaneously.

The accelerator was attached to a Power8 server
with 8 cores (Table 1). For each interface (PCIe, CAPI)
two different sets of experiments were conducted in
order to measure the performance of the hardware
configuration. The results concerning the PCIe are
shown in Figure 11. The left part illustrates the
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accelerator’s processing rate by varying the number
of images per request as well as the number of
hNNs implemented in the accelerator. In this case,
the images are stored locally to the server and not
received from multiple clients over the network. The
number of images per request does not affect the
performance when 1 or 2 hNNs are implemented in
the accelerator. The rate is 2.6 MImages/sec and
5.2 MImages/sec correspondingly. When 4 hNNs
are integrated, the maximum rate (10.4 MImages/sec)
is achieved when each request contains at least 2K
images.

Table 4: Implementation parameters of a neural
network (Nt =32, XC7VX690T-2 Virtex-7 FPGA)

Phase 1 Phase 2 Phases 3-4 Total

BRAMs 4 % 1 % 1 % 6 %

DSP - 13 % - 13 %

FFs 1 % 3 % 1 % 5 %

LUTs 7 % 8 % 1 % 16 %

Slices - - - 18 %

The right part of Figure 11 illustrates the
processing rate, when 4 hNNs operate in parallel,
varying the number of connected clients over the
network. It is obvious that the maximum rate of
this set-up can be achieved even for a small number
of active clients. Although in the case of 4 hNNs
the maximum achievable rate is 10.4 MImages/sec
it can be seen that the maximum processing rate of
the whole set-up is less due to the used network
interface (934.4 Mbps data rate over a 1 Gbps Ethernet
link), since the communication interface becomes the
systems bottleneck. Nevertheless, the system with
1 Gbps network interface and hardware acceleration
is up to 21 times faster compared to the software
implementation.

The achieved processing rates when CAPI is
used are shown in Figure 12. The performance is
slightly better when 4 hNNs are implemented in
the accelerator as it can be seen in the left part
of the figure. In this case, the accelerator reaches
its maximum value even for a small number of
images per request. So, the configuration with
CAPI outperforms the configuration with native PCIe.
Traditional I/O attachment protocols, like PCIe,
introduce significant device driver and operating
system latencies, since an application calls the device
driver to access the accelerator and the device driver
performs a memory mapping operation. With CAPI
instead, the accelerator is attached as a coherent CPU
peer over the I/O physical interface.

8 Conclusions

The design and implementation of a computing
engine for handwritten digits recognition was

presented. This engine can be used for cloud
applications and achieves high performance, in
terms of processing rate, when a hardware
accelerator with multiple neural networks is used,
as demonstrated by experimental results. Details of
neural networks implementation on reprogrammable
logic have also been described. The architecture
can be parameterized in order to achieve the best
compromise between hardware complexity and
processing performance.
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